How we build reality

Case Study

High Dynamic Range

Company Overview

Z+F is one of the world’s leading manufacturers in the field of non-contact laser measurement technology. Due to years of research, development and numerous successful engineering projects, Z+F is the forerunner in this field with a wealth of knowledge, experience and success.

When it comes to implementing future developments Z+F has always encouraged innovative thinking and open-minds. Our loyal and long-standing customers appreciate our continual innovations, support and the services we provide.
High Dynamic Range

Everybody knows the problem: When taking a picture of a scene with a high contrast, (e.g. picture 1a) the photo usually contains some overexposed and underexposed areas and one has to decide which part to expose correctly. Standard cameras aren’t equipped with sufficient dynamic range to feature all intermediate stages between the lightest and darkest pixel. If one brightens up or darkens the area later with the help of image processing, one will not be able to restore the details.

For a HDR picture, several images with different exposures are made and combined (see above).
What is HDR?

HDR offers a solution to display homogeneous colour information.

Therefore several pictures of the same scene are taken with different exposure times, including intentional underexposed and overexposed pictures, in order to capture every contrast area correctly. Even those areas which would be underexposed are captured (e.g. picture 1b, 1c, page 2). After this process all pictures are merged into one high dynamic range picture, displaying an ideal result (e.g. top picture, page 2).

HDR is not a new technology, but Z+F is the first manufacturer to integrate this capturing technique into a 3D laser scanner. Until now the HDR workflow was very time consuming. Usually a reflex camera, equipped with a wide-angle lens is being used. The camera is mounted onto a nodal point adapter and then onto the tripod, replacing the scanner. This process takes a lot of valuable time and may be inaccurate.

The Z+F IMAGER® 5010C executes this entire workflow automatically. Just activate the camera and the scanner takes all required photos.

The HDR picture is being generated in the Z+F LaserControl® software and combined with the point cloud automatically. Compared to the manual method, Z+F’s HDR procedure does not require any previous knowledge in the field of photography, e.g. about aperture and exposure time, and allows a simple and quick 3D documentation of the surrounding area.
Industry

Existing factories and industrial plants can be surveyed in detail and threedimensionally.

CAD models of the actual state of a factory or plant (e.g. pipes, steel beams) can be generated out of the 3D scan data. By using 3D models it is possible to plan plant expansions or modifications.

2D construction plans can be derived from the millimeter accurate point coordinates of the scans. In addition, colour allows to asses the condition of pipes and valves (e.g. rust etc.). And as pipe-work can be pretty complex with lots of shadowing, HDR technology guarantees perfect colour results, even in very narrow areas. Colouring, especially with HDR technology, can help tremendously with classification and differentiation of pipes, wires and other objects.

Very often the following colour combinations are used on pipes:

- red = warm
- blue = cold
- yellow = gas

HDR point cloud of the Z+F IMAGER® 5010C in the harbour of Cape Town, South Africa. The colour of the pipes indicate their content and condition. Source: Satmap Solutions/HORTS Solutions, South Africa

Point cloud of a site with strong backlight. Source: Satmap Solutions/HORTS Solutions, South Africa

Point cloud with an overlaid CAD model, Zeche-Zollverein, Essen, Germany

Scan of the Zeppelin NT-Hangar
Documenting cultural heritage sites (e.g. castles) is quite a difficult task due to the high level of details which have to be captured.

In many cases plans and layout documents do not exist and need to be generated from scratch.

3D documentation is the ideal foundation for reconstructing very delicate structures, including fragile stuccoworks. The recorded data can be stored in a database, which allows the reconstruction and interactive interrogation of the data at any given time in the future.

Colour information adds an important value to point clouds especially in the field of heritage preservation because of the high documentation emphasis. In addition, it allows the recognition and evaluation of decay and presence of flora such as moss, mould and fungus.

By using the HDR technique, objects are being displayed perfectly exposed irrespective of the strong contrasts. This makes it easier to distinguish between different material and creates a more realistic impression.

Cultural Heritage

Z+F HDR point cloud of “Fort St. Jago”, Ghana taken by the Zamani Project, South Africa

HDR point cloud of “St. Martins Church”, Wangen im Allgäu, Germany
Architecture

Z+F 3D phase based laser scanners enable a detailed condition and damage assessment even of complex structures. Thus, 3D data is an ideal planning base. Simulations to create new studies of the objects are being supported by documenting sites with laser scanners.

The Z+F IMAGER® 5010C generates an exact spatial model of complex structures and their surrounding areas. With HDR, even details in small shadowed areas on facades, such as roof overhangs and cornices remain visible.

Even colour scans in high contrast scenes inside of buildings with big glass fronts can be captured with HDR.
Forensics

Just within minutes, the Z+F laser scanners provide correct and objective spatial data of a crime scene and accident scenes, whether indoor or outdoors.

The data helps the crime scene units to document and to "freeze" the scanned scenes.

The measurement methods based on laser scanners and the evaluations of the data are accepted in court and used by the FBI and the police every day.

Z+F HDR and the integrated automated white-balance process allows the simple, reliable, objective and fail-safe acquisition of colour information, even in direct sunlight.

HDR point cloud with a Z+F IMAGER® 5010C of a simulated crime scene

HDR point cloud from above in 3D

3D model of an accident scene

HDR point cloud allows the objective documentation of crime scenes. Even black objects on dark background can be identified.
Z+F HDR scans Around the World

Chile

Germany

Tunisia

Austria

Sam O. Hirota, Inc, Hawaii